e/pi studies

Abhisek Sen

e/pi preliminary plots

We observed significant deviation between data and default Geant4. Out default simulation setup:

Physics list: QGSP_BERT_HP

Birk's constant: 0.0794*mm/MeV

Suggestion: Change Birk's constant and Physics lists.

HCAL ONLY simulations

Run lot of simulation since last week.

Default Birk's constant implemented deep inside Geant4::G4EmSaturation.

In future I think we should change Birk's constant from macro itself.

Inside PHG4Reco:
G4Material *Epoxy =
nist>FindOrBuildMaterial("G4_POLYSTYRENE");
//Change Birk constant
Epoxy->GetIonisation()->SetBirksConstant(new_value*cm/MeV);

Confirm the value implemented in stepping action.

Comparison with data

Birks's constant = 0.02 cm/ MeV agrees with data well.

4 GeV hadron measurements are poor:

- 1. Low hadron fractions in lower energy.
- 2. Muon peak peak is also at 4 GeV

Full: EMCAL+HCAL e/pi

Comparison with data

The difference is still significant!!

e/pi was determined by taking ratios of electrons and pions measurements using exact same calibration constants.

You can see two peaks. Calibration is not good. Electrons with EMCAL+HCAL at 28 GeV. $E_{\pi} = E_{FMCAL} + E_{HCAL}$

$$E_{\pi} = E_{EMCAL} + E_{HCAL}$$

$$E_{e} = (\frac{e}{\pi})_{EMCAL} E_{EMCAL} + (\frac{e}{\pi})_{HCAL} E_{HCAL}$$

